Best practices of Symbiotic Platforms

Thanasis Gentimis
School of Chemical Engineering
National Technical University of Athens

10 December, 2018
Industrial Symbiosis - Definitions

- **Industrial Symbiosis**: Creating industrial networks exchanging materials & energy for economic, environmental and social benefits.

- **Industrial Symbiosis** helps companies:
 - Reduce raw material and waste disposal costs
 - Earn new revenue from residues and byproducts
 - Divert waste from landfill and reduce carbon emissions
 - Open up new business opportunities
The Case Of Kalundborg
The Case Of Kalundborg

- Located in Kalundborg, Denmark
- Self organized network
- 6 private partners
- 3 public partners
- Over 5000 employees combined
- 25 different resource streams exchanged
Kalundborg – Benefits Reported

- 2 million cubic meter/year ground water saved
- 1 million cubic meter/year surface water saved
- 200,000 tn natural gypsum saved
- 200,000 tn fly ash used as secondary material
- 2,800 tn of sulphur saved
Industrial Symbiosis - Challenges

- Focus mostly on “1-1” connections.
- Limited network size and complexity.
- Non systemic use of information and knowledge.
 - Accidental discovery of connections during workshops.
 - Dependence on the skills of each broker.
 - Absence of modelling of existing knowledge.
 - Brute force approach.
Data Is The New Oil

The world’s most valuable resource

Data and the new rules of competition
The Era Of Big Data

- Materials / Waste Quality & Quantity Data
- Location Data
- National Statistics
- Questionnaires
- National Waste Registry
- Pretreatment / Upgrade Processes
- End of Waste Criteria
- Road Network and Geodata
- ISO & Other Standards
- Cost parameters
- Legal Framework
Industrial Symbiosis: State of Play
Industrial Symbiosis: A New Report

Cooperation fostering industrial symbiosis market potential, good practice and policy actions (2018)
Final report

University College London, Technopolis Group, Trinomics, TNO, International Synergies
For the present study we have identified a typology of intermediaries that differentiate two extreme models in a continuum, varying from hands-off support to hands-on support:

- At one extreme of the spectrum there are waste exchange web-based tools or portals, where companies can input waste and by-products which may be of interests to other firms. These types of initiatives have had a very limited success and have generally only led to one-off, low value transactions. A review of online waste exchange initiatives has been carried out as part of the EU-funded project SHAREBOX\(^3\). In many cases, developed websites are extremely simple and do not allow for more complex IT platforms that also enable learning or more in-depth interactions.

- On the other side of the spectrum we have hands-on support structures, which in many cases resemble or build on the NISP model (see section 2). In these cases, IS is supported by a team of experts or practitioners that engage with firms and other stakeholders for the purpose of the development of IS projects.
ICT platforms for quality assurance/reporting

- ICT plays a role in tracking and reporting auditable measurements.
- “Synergie” Platform managed by practitioners, proposes a 5 stage gateway process to manage the synergy initiated.
- INEX (France) has also developed a platform that incorporates a GIS system to track synergies and identify potential.
- Web-based platforms have been developed as a result of EU funded initiatives.
Case study:
SMILE Resource Exchange /Ireland

- The SMILE programme started off as a platform for connecting companies for exchanging excess resources. This didn’t require much expertise, as the material exchanges were not very difficult, and therefore the methods employed by the platform for facilitation were simple.
Case study:
SMILE Resource Exchange /Ireland
Case study:
SMILE Resource Exchange /Ireland
The website services of a sharing platform have been maintained in their simplified version. There, for example, a large company trying to donate furniture can connect to organisations who can reuse that. This type of exchange does not require expertise of consultants and is resolved through facilitating the contacts between supply and demand on the platform.

However, in order to undertake larger scale IS projects, the role of the technical consultants in mobilising the companies was believed crucial.
Case Study: Symbiose Platform /Belgium

- The Flemish Agency for Innovation and Entrepreneurship funded the Symbiose Platform between September 2012-December 2015.

- As an output of these activities, the database mapped 2000 opportunities for flows of raw materials and technologies that could happen between 300 companies. Of these opportunities, some 500 were followed more closely.
Case Study: Symbiose Platform /Belgium

- However, these links then needed to go through the negotiation and testing phase, which was out of the scope of the support offered by the Symbiose Platform.

- The programme was therefore renewed in September 2017, opening the platform for exchanges across more industries, in order to achieve cross-sectoral synergies.
Local & Regional IS Platforms

- In general, local and regional levels are seen as better suited to promote IS synergies. Most of the stakeholders consider that synergies can be better coordinated at the regional level.

- The main concerns
 - Ownership and management of the platform (who would own it and who would manage it)
 - Viability...
Economically Sustainable IS: How-To be Viable

- Network: organizations for cooperation, information and knowledge exchange.
- Capabilities – the skills, expertise, knowledge needed to adapt to changes.
- Institutions.
- Technical infrastructures, technologies, logistical arrangements, ICT necessary for the handling of big data, providing potential technical solutions and tacit information in support of IS activities.
Challenges - Barriers

- Limitations imposed by regulations (political boundaries)
 - Transport of waste
 - Lack of harmonisation of end-of-waste status across country
- Issues related to the confidentiality of data and its commercial character.
- Lack of integration of existing IS web tools.
Industrial Symbiosis: The Greek Experience
eSymbiosis Project

- Start: 01/10/2010 - End: 30/06/2014
- To produce a Web Based platform for Industrial Symbiosis communities, offering automation, supporting SMEs considering regional priorities and enabling the public administrators (municipalities, regional offices) to implement their environmental policy and to monitor environmental and economic consequences.
eSymbiosis Platform
eSymbiosis Platform

Site Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Name</td>
<td>MySite</td>
</tr>
<tr>
<td>SIC Code</td>
<td>123</td>
</tr>
<tr>
<td>SiteAddress</td>
<td></td>
</tr>
<tr>
<td>PostalCode</td>
<td></td>
</tr>
<tr>
<td>SiteTown</td>
<td></td>
</tr>
<tr>
<td>County</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Telephone</td>
<td></td>
</tr>
<tr>
<td>Fax</td>
<td></td>
</tr>
<tr>
<td>Web Address</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Data Added</td>
<td>30/11/2011</td>
</tr>
<tr>
<td>Sector</td>
<td>Sector A</td>
</tr>
</tbody>
</table>

Region Information

<table>
<thead>
<tr>
<th>RegionId</th>
<th>Name</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Suffolk</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

IS Practitioner Information

<table>
<thead>
<tr>
<th>ISPractitionerId</th>
<th>Title</th>
<th>FirstName</th>
<th>LastName</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>Mrs</td>
<td>Practitioner3</td>
<td>Practitioner3</td>
</tr>
</tbody>
</table>
eSymbiosis Platform
eSymbiosis Platform
eSymbiosis Platform
eSymbiosis Platform

![eSymbiosis Platform Interface](image)

Search Resources

Search Criteria
- Resource: [input field]
- Region: [dropdown or input field]
- Resource Quantity: [input field]

Search

Results

<table>
<thead>
<tr>
<th>Name</th>
<th>Quantity</th>
<th>Have</th>
<th>Want</th>
<th>Type</th>
<th>Sub Type</th>
<th>Transport Method</th>
<th>Storage Method</th>
<th>Site SIC Code</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>21312.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td>Solid</td>
<td>Flake</td>
<td>Bulk Bags</td>
<td>Bunker</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150.00</td>
<td></td>
<td></td>
<td>Solid</td>
<td>Powder</td>
<td>Bulk Bags</td>
<td>Bay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>240.00 m³</td>
<td></td>
<td></td>
<td>Liquid</td>
<td>Slurry</td>
<td>Tanker</td>
<td>Closed Tank</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>350.00 Kg</td>
<td></td>
<td></td>
<td>Solid</td>
<td>Flake</td>
<td>Bulk Bags</td>
<td>Bunker</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1250.00 Tonnes</td>
<td></td>
<td></td>
<td>Solid</td>
<td>Tipping</td>
<td>Tipper</td>
<td>Bunker</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.00</td>
<td></td>
<td></td>
<td>Solid</td>
<td>Flake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td></td>
<td></td>
<td>Solid</td>
<td>Powder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>asdasd 123</td>
<td>00</td>
<td></td>
<td></td>
<td>Solid</td>
<td>Powder</td>
<td></td>
<td></td>
<td>12 SIC Code 2</td>
<td></td>
</tr>
<tr>
<td>asdasd 1000</td>
<td>00 m³</td>
<td></td>
<td></td>
<td>Liquid</td>
<td>Slurry</td>
<td>Pallet</td>
<td>Bunker</td>
<td>123 SIC Code 1</td>
<td></td>
</tr>
</tbody>
</table>
Synergy Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SynergId</td>
<td>768</td>
<td>CreationDate</td>
<td>09/11/2012</td>
</tr>
<tr>
<td>IsCompleted</td>
<td>□</td>
<td>IsBlocked</td>
<td>□</td>
</tr>
<tr>
<td>First Party ready to proceed to next Status</td>
<td>□</td>
<td>Second Party ready to proceed to next Status</td>
<td>□</td>
</tr>
</tbody>
</table>

Step 1: Idea

Step 2: Discussion

Step 3: Negotiation

Step 4: Implementation

Step 5: Complete

Description of Current Status: The parties discuss in more detail (costs, quantities, critical path, etc).

Proceed To Next Step

Block Synergy

Reason for blocking Synergy Progress:

Block Synergy Progress
eSymbiosis Platform

<table>
<thead>
<tr>
<th>Resource Match</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevance</td>
<td>75.67 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Resource</th>
<th>Second Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Id:</td>
<td>142</td>
</tr>
<tr>
<td>Matches Count:</td>
<td>6</td>
</tr>
<tr>
<td>Locked:</td>
<td>False</td>
</tr>
<tr>
<td></td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>False</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>boxes</th>
<th>Name</th>
<th>Lignocellulosic Feedstock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of availability</td>
<td>2001/01/01</td>
<td>Start of availability</td>
<td>2012/08/09</td>
</tr>
<tr>
<td>End of availability</td>
<td>2012/01/01</td>
<td>End of availability</td>
<td>2015/12/08</td>
</tr>
<tr>
<td>Quantity Type</td>
<td>Solid</td>
<td>Quantity Type</td>
<td>Emulsion</td>
</tr>
<tr>
<td>Quantity</td>
<td>1</td>
<td>Quantity</td>
<td>150</td>
</tr>
<tr>
<td>Unit of Measurement</td>
<td>Tonnes (kg*1000)</td>
<td>Unit of Measurement</td>
<td>Tonnes (kg*1000)</td>
</tr>
</tbody>
</table>
AI4B Project

- Advanced IT Infrastructures for Biomass Supply Chains
- Co-financed by EU’s Regional Development Fund and Greek national resources.
- Mobilizes academic partners, IT SMEs and regional development agencies.
- Brings IT closer to biomass symbiotic networks to leverage sustainable bioenergy practices.
AI4B Platform

User Profile

<table>
<thead>
<tr>
<th>Username</th>
<th>Full name</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc</td>
<td>Δοκίμη</td>
<td>info@ai4b.gr</td>
</tr>
</tbody>
</table>

My Biomass Offers

<table>
<thead>
<tr>
<th>Biomass Type</th>
<th>Biomass Quantity</th>
<th>Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive Leaves And Branches</td>
<td>222tn</td>
<td>2017-10-06</td>
</tr>
</tbody>
</table>

My Biomass Demands

No results found.

Installations

No results found.

Additional Features

- Create New Offer
- Create New Demand
- Create New Installation
AI4B Platform

Create new Offer

- Biomass
- Area
- Price (euros/in)
- Moisture Min
- Moisture Max
- LHV Min
- LHV Max
- Is available on

Create new Demand

- Biomass
- Area
- Price (euros/in)
- Moisture Min
- Moisture Max
- LHV Min
- LHV Max
- Is available on

* Location
Select your location by clicking on the map

Submit Offer
Submit Demand
AI4B Platform

I am offering Biomass
Are you a Biomass Producer? This is the way to find people and companies in your area that have specific Biomass demands.

I am looking for Biomass
Are you a Biomass Consumer? This is the way to find quantities of the Biomass you need, from producers in your area.

Enter your Biomass offer parameters

<table>
<thead>
<tr>
<th>Do you know the Biomass Product you need?</th>
<th>What is your Production Activity?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass Category</td>
<td></td>
</tr>
<tr>
<td>Biomass Product</td>
<td></td>
</tr>
<tr>
<td>Municipality</td>
<td></td>
</tr>
</tbody>
</table>

Get Results
AI4B Platform

I am offering Biomass
Are you a Biomass Producer? This is the way to find people and companies in your area that have specific Biomass demands.

I am looking for Biomass
Are you a Biomass Consumer? This is the way to find quantities of the Biomass you need, from producers in your area.

Enter your Biomass demand parameters

<table>
<thead>
<tr>
<th>Do you know the Biomass Product you need?</th>
<th>Do you know the Enabling Technology you use?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass Category</td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td></td>
</tr>
<tr>
<td>Municipality</td>
<td></td>
</tr>
</tbody>
</table>

Get Results
AI4B Platform

Offers for the Biomass you need:

<table>
<thead>
<tr>
<th>Name</th>
<th>Biomass Type</th>
<th>Biomass Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΠΑΠΑΛΕΞΗΣ</td>
<td>Peach Tree Prunings</td>
<td>18</td>
</tr>
</tbody>
</table>

Details

Biomass Potential in the Area:

<table>
<thead>
<tr>
<th>Municipality</th>
<th>Municipal District</th>
<th>Estimated Available Quantity (tn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOIN. DENDRON</td>
<td></td>
<td>1536</td>
</tr>
<tr>
<td>KOIN. FALANNIS</td>
<td></td>
<td>1037</td>
</tr>
<tr>
<td>DIMOS AMPELONOS</td>
<td></td>
<td>691</td>
</tr>
<tr>
<td>DIMOS TYRNAVOU</td>
<td></td>
<td>600</td>
</tr>
</tbody>
</table>
AI4B Platform
AI4B Platform

Choose Enabler: Gasification A

Choose Biomass: Corn Straw / Corn Strains / Corn Stalk / Corn Stover

Annual Biomass Quantity: 2006

Unit Costing

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Expenditure</td>
<td>1,716,000.00 €</td>
</tr>
<tr>
<td>Capital Expenditure based on annual operational costs</td>
<td>257,000.00 €/y</td>
</tr>
<tr>
<td>Fixed operational cost</td>
<td>57,000.00 €/yr</td>
</tr>
<tr>
<td>Variable operational cost</td>
<td>17,000.00 €/yr</td>
</tr>
<tr>
<td>Involved Treatments</td>
<td>drying, mechanical size reduction, burning, electricity production</td>
</tr>
</tbody>
</table>
Industrial Symbiosis: A Modern Approach
Designing the SYMBIOSIS Platform
Platform Design Principles

- Open Architecture / Extendable
- User friendly / Intuitive
- Automated
- Cost Effective
- Partial Matches discovered
- Dynamic Process
- Accountability / Metrics
- Data Protection
A Modern Platform - SYMBIOSIS
Thank You!